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MICRO-COMPUTER NETWORK ARCHITECTURE

FOR RANGE INSTRUMENTATION APPLICATIONS

Project Summary

Very Large Scale Integration (VLSI) technology has been developed to the

point where special purpose processors may be concatenated to form

supercomputers with far greater throughput rates than uniprocessor machines.

MTI has developed a parallel form of the conventional Kalman filter that is

well suited to being implemented in a multiprocessing environment. Moreover,

our Decentralized Square Root Information Filter (DSRIF) has several very

unique features which could be incorporated into the design of an integrated

test range tracking system with much improved performance over existing

methods.

Phase I research demonstrated feasibility of the DSRIF as a means for

solving tha lineur least squares estimation problem in decentralized form.

* Also, an extended form of the DSRIF was derived and successfully used to

process real Multiple Rocket Launch System Data provided by the White Sands

Missile Range.
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LIST OF SYMBOLS

i superscripted local system number

j superscripted vector element number

k time index, may be subscripted or enclosed in parentheses

xk global state vector

wk global process noise vector

1k global state transition matrix

k xi local state vector

ox1  origin of a local coordinate system in earth
centered earth fixed coordinates

ox origin of the global coordinate system in earth
centered earth fixed coordinates

ori radial vector from earth's center to the

origin of a local coordinate system

wk local process noise vector

k local state transition matrix

y local measurement vector

C 
g

k]C global observation sub-matrix

kH1 local observation matrix

vk local measurement noise vector

xk(±) (measurement updated) global state estimate
* time updated

kxi(±) measurement updated) local state estimate
time updated

Pk(±) measurement updated global estimate error covarionce matrix
* time updated /

Pki(±) measurement updated) local estimate error covariance matrix
time updated

M matrix of zeros and ones which partition the global states to the
* local systems

'O k  covariance matrix For process noise vector
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kRi covariance matrix for local measurement noise vector

PO(-) initial global estimate error covariance matrix

N number of time samples

M number of local systems

Mi number of local measurement variables

Zw(k) "pseudomeasurement" vector

Rw(k) inverse square root of Ok

Rk(±) (measurement updated) global square root information matrix

time updated

zk(±) (measurement updated) global square root information vector

time updated

R(+) 'measurement updated local square root information matrix

time updated

Z((±) measurement updated) local square root information vector

time updated

ei local "innovations" vector

(i) (i) (i)

RZ(k) R(k) z(k) local smoothing coefficients

R (k) R"(k) z*(k) global smoothing coefficients

z*(k) Hu(k) merge coefficients

t continuous time variable

di local coordinate system displacement vector
L latitude of global coordinate system origin

S longitude of global coordinate system origin

a
i

0 pi  Euler angles defining the orientation of the local coordinate system

T
i  w.r.t. to the global coordinate system

re average earth radius

-Ti orthogonal transformation in local measurement update

2Ti orthogonal transformation in local time update%M 
k
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3 Tk orthogonal transformation in first merge step

4 Tk orthogonal transformation in second merge step

5Ti orthogonal transformation in local measurement update (E-DSRIF)

6Tk orthogonal transformation in local time update (E-DSRIF)

Ti  orthogonal coordinate transformation between the local and global

coordinate system

Tg orthogonal coordinate transformation between the global coordinate

system and the earth centered earth fixed coordinate system

product of G and re

r range measurement

rk range rate measurement

e* elevation angle measurement

kri azimuth angle measurement

' G gravitational constant

me earth's mass

2 earth's angular velocity

u(t) deterministic control

f(x(t),u(t)) nonlinear dynamics vector

hi(x(t)) nonlinear local observation vector

Fk linearized dynamics matrix
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1.0 Introduction

VLSI (Very Large Scale Integration) technology has been developed to the

point where high speed floating point processors may be concatenated to form

compact supercomputers with far greater throughput than uniprocessor machines.

Thus, there currently is considerable interest within the signal processing

community in the development of parallel versions of many conventional

algorithms such as convolution, matrix multiplication and factorization. MTI

has collaborated with Dr. G.J. Bierman to develop a parallel form of the

Kalman filter that has several very unique and important features. We believe

that utilization of these features will result in the design of an integratad

test range tracking system that exhibits much improved performance over the

existing "independent" approach to tracking at the White Sands Missile Range

(WSMR).

Specifically, our Decentralized Square Root Information Filter (DSRIF)

[1] allows each group of measurement variables, the process noise statistics

and the prior information about the initial state to be processed in separate
but locally optimal filters. Globally optimal state estimates and estimate

error covariances may then be computed by combining local filter outputs on
demand. This will allow the analyst to identify the contribution of each
measurement group, the process noise and the prior information about the

initial state to the global state estimate and estimate error covariance

without additional computation.

Furthermore, the process noise and prior information may be distributed

amongst the data processing filters in order to improve upon the fault

tolerant characteristics of the nominal algorithm when real-time signal
processing is an issue. In this case, the estimates and covariances should

gracefully degrade from global optimality as local processors fail. Thirdly,

the algorithm is based upon numerically reliable matrix factorization methods

which, unlike the Conventional Kalman Filter (CKF), will never fail.

The objective of Phase I research was to validate the DSRIF equations by

testing its ability to track a predetermined ballistic trajectory when

perturbed by white Gaussian noise. The state estimates and error covariances

obtained were found to be identical (when printed to 10 significant digits)
with those of a SRIF implemented in centralized form with all calculations

performed in double precision arithmetic. Furthermore, an extended version of
the DSRIF (E-DSRIF) was derived and successfully used to track real Multiple
Rocket Launch System data obtained from the WSMR.

The remaining parts of this Phase I report are organized as follows. In
the next section we formulate the decentralized estimation problem and define

a necessary and sufficient condition for recovering globally optimal state

estimates from locally optimal ones. Then, in section 2.1 we derive the DSRIF

and show how the effects of prior and process noise may be distributed. In
section 2.2, the ability of the DSRIF to accurately track the position and

velocity of a ballistic object is tested via a computer simulation. Finally,
in section 2.3, the E-DSRIF is used to track a maneuvering vehicle but using a

polynomial process model for the target dynamics.
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2.0 Results of the Phase I Work

The trajectory estimation problem is a problem of nonlinear estimation.

Assume that the state of a target evolves in time according to the equation

x(t) = f(x(t),u(t)) + w(t) (i)

where u(t) is the target's nominal control vector and w(t) is a zero mean

white noise process with spectral density Q(t). Values for the latter are

selected in order to compensate for errors in the model which may originate

from unknown perturbations to the nominal control (such as shear winds, wind

gusting etc.) as weil as from uncertainties in the aerodynamics of the target

vehicle. The corresponding discrete measurement vector for the ith sensor is

given by

i iYk = hi(xk) + vk (2)

where vi is a zero mean white noise sequence with covariance Ri. The problem
is to estimate the target states xk based upon all of the past measurements

where (li M and llk}. The state vector xk contains the target position and

* velocity, biases which account for the displacement and orientation of the

sensor or "local" coordinate systems (LCSs) w.r.t. the global coordinate

system (GCS), and acceleration when the target vehicle is maneuvering.

Unfortunately, the optimal nonlinear estimator (conditional mean) cannot

be realized with a finite-dimensional implementation and consequently, all

practical nonlinear filters must be suboptimal. The usual suboptimal solution

is the CKF when the nominal trajectory is known a priori, the Extended Kalman

Filter when the nominal trajectory is unavailable, and Higher Order Filters

(such as the second order filter [4], the single-stage iterative filter [5],
and the Gaussian sum filter [6], among others [7]) when even greater accuracy

is desired. The tradeoff here is performance versus real-time computational

requirement.

Thus, we see that the ability of a sensor group to accurately record the

motion of one or more airborne targets is a function of the individual target
Vi and sensor dynamical models as well as the particular algorithm used to

combine raw data and produce track estimates. Another issue is intersensor
communication. Sensors which operate independently from one another will

exhibit larger estimate errors than ones which communicate with other members
of the network.

Let the global discrete time linear system

xk Ik-1 xk-1 + wk-1 (3)

.where

wk = N(O,Qk) (4)

- N(O,Po(-)) (5)

be the model for the target, and the global measurement model

-12-



0

Yk Ck vk

-1= I Xk + (6)

LJ L 1 L kJ

where vk through vk are uncorrelated random vectors andk k

vk - N(O,Rl) (7)

be the model for the sensors.* The problem is to calculate the globally
optimal (minimum mean square error) estimate of xk and its associated estimate
error covariance matrix P when yk through yk are processed separately by

locally optimal estimators 1 through M correspondingly. The local dynamical

models are

4 -.i-, xiI + Wl.l (8)

where

kwi . (OQk(9)

x1 - N(O,P (-)) (10)

and the local measurement models are

Y' = HI xI + v1 (11)

where vi satisfies (7). Notice that the local states may be physically
different from the global states. Wilsky et.al. [3] have recently shown that
a necessary and sufficient condition for our being able to recover globally

optimal state estimates from locally optimal ones is that

Ci = Hi Mi (12)

and for the tracking application, we expect that

xi - Mk xk (13)

where Mi is a matrix which results in the correct partitioning of global

V states to the subsystem filters. Alternatively, equation (12) allows us to
define the local state vector as d' plus the local state vector defined in

section 2.2 (both in local coordinates) provided that Mi = (Ti)tr .

4.- *Lower case variables are vector quantities while upper case generally
* corresponds to matrices of appropriate dimension. Also wk, x0 , and vk through

* vM
v are uncorrelated with each other for all k and N(aB) signifies an a mean
white Gaussian process with covariance macrix B.

-13-



2.1 Derivation of the DSRIF

The derivation of this algorithm may be found in our recent publication

[1] with the exception of some new ideas on the distribution of prior

information about the process (plant) noise and initial state amongst the

local processors.

Let Mi = I. The goal is to find the sequence x0 . ...xN that minimizes

the least squares likelihood performance functional [2, pg.42]

M N

JN(XO.xN) = IIRO(-) XO - Zo(-)112 + Z E II(Ri)- 4Hi Xk k (Rk) Yk
i=1 k=O

N-1
+ E 11 zw(k) - Rw(k) wk 112 (14)

k-O

-1

where the a priori estimate R0 (-) zo(-) has covariance

-1 -T
PO(-) - R0  (-) R0  (-) , (15)

~' ~-1 -T

Qk Rw (k) Rw (k) , (16)

Zw(k) - Rw(k) times the a priori expectation of w k , and the pair z3, Hi

correspond to normalized measurement equations i.e., RI - I. Decentralized
processing is achieved by distributing the minimization of the performance

% criterion amongst the local filters and global merging equations that follow.
The best distribution for target tracking is probably to minimize
[f H xk - zk f(2 in each of the M local filters and minimize the remaining

two terms in (14) within the central (merge) processor. However, this point
should be explored in detail in Phase II research. Thus, both data types may

be processed using the standard SRIF mechanization:

Measurement Update

7~ k~- zkl(-) 7k R(+) zkl(+71 17R) I L ek I1 (17)

Time Update

2Ta Rw(k) 0 Zw(k)
• -Ri(+) fk -  R (+) ik -  

kl+

-14-



FR*Ck) R*x(k) z*(k)

- I I(18)
(i) (i)

O Rk+ 1 (-) Zk+1(- )

where

[ Ri(-) zi(-) ] 0 [ 0 ] (19)

[Rw(k) zw(k) II- [0 0] (20)

and 1Ti, 2 Ti are orthogonal transformations which put the matrices on the left
hand sides of (17) and (18) into upper triangular form. They may be
implicitly computed using Householder transformations [2, p.60-64].

In terms of the local filter results (17) and (18), the performance can

be rewritten as

N-1

* JN(xO.. XN) R I (-) xo - z0(-) 112 + E 11 zw(k) - Rw(k) wk 112
k-a

I-w,(k) Ixk) Zw(k )

+ 11 wk + Xk+l 112
* (M) (M) (M)

RZ(k) Rx(k) z*(k)

-- ](1) (1)

Me +RN(+) ZN(+)M M

+ i k 1 ek(i) 112 + 1 XN -11j 2  (21)

A LRN(+) J LZN(+)

Applying an orthogonal transformation to the first three terms in (21),
results in the following recursive equation for combining local smoothing

coefficients with process noise and prior on Xo:

-15-



(1) (1) (1)1IR:( k) R:,x ( k) z:,( k 1

(M) (M) (M)
5Tk  R*(k) Rx(k) z*(k)

1R(k) 0 zw(k)
-1 H ( -) 1-1 * k 1-H*(k-1) Ik HN(k-1) {k z#(k-1J

-( k )  Rwx(k) Z*(k)

_ 0 H*(k) z4(k) (22)

. 0 0 #

-J

[ H*(-1) z*(-1) ] = [ RO(-) Zo(-4  (23)

and H*(k) is upper triangular. To obtain the globally optimal information
vector Zk(+) and square root information matrix Rk(+), we solve the following
equations using H*(k) and z*(k) from (22):

F' (1) (11
IkR(+) ZkC+)

4 Tk (24)Tk(M) (M)i

Rk(+) Zk(+) 0  #

L H*(k-11 z*(k-1)j

where 4Tk is an orthogonal transformation which puts the left hand side of
(24) in upper triangular form. Globally optimal filter estimates and
covariances are then given by

-1

xk(+) = Rk (+) zk(+) (25)

-1 -tr

Pk(+) - Rk (+) Rk (+) (26)

When the a priori information about the initial condition and process noise
models are adjusted, it is only necessary to rerun (22) and (24) without
reprocessing any measurements.
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To summarize, each data-type is processed by a local SRIF

I I II

Local f I
meas. group #11 SRIF h I

;j #1 II III
Central Central Central

Merge Merge j Merge Xk(+)
Local I I

meas. group #M I SRIF [- o ssorl I P Processor I Pk(+)
#M I I IPoeso I

Stage #11 Stage #2 Stage #3

Local I
xO(-),PO(-),Qk SRIF

A#M+1
* (i)

(17)-(20) which generates a set of smoothing coefficients

(i) (i) (i)
R~x(+) ,z(+) as well as a square root information matrix R(+) and

(i)
information vector z(+) The central or merge processor consists of three

separate processors which operate in parallel. The first mechanizes (22),(23)

which combines the local smoothing coefficients with the effects of process

noise and prior information about the initial state. The second mechanizes

(24) which merges the local square root information matrices and vectors with

output from the first, but only upon demand by the third. The third produces

estimates and covariances whenever desired by back-solving (25) and (26)

respectively, noting that (25),(26) require output from the second processor.

An important observation is that there is no feedback of information from the

merge processor to the local filters.

Actually, a family of DSRIFs exist. Each member corresponds to a

different distribution of process noise and prior information about the
initial state amongst the local processors and the first merge processor

(22),(23). To see this, realize that the prior and process noise terms in

(14) may be written as

M (i) W
-p Zw(k) - Rw(k) wk 112 - E II zw(k) - Rw(k) wk 112 (27)

i=1

SfM (i) (i)

IIRo(-) xo - zo(-) 112 _ E Ii RO(-) xO - ZO(-) 112 (28)
i-1

(i) (i)

where the dimension of w and x are both n. The vectors zw(k) ,zo(-) and

' -17-



(i) (i)

matrices Rw(k) ,Ro(-) are chosen so that the local norms on the right
hand side of (27),(28) remain invariant with respect to orthogonal

transformations. Each norm may be incorporated into a local SRIF or the first

merge processor and minimized there.

2.2 Validation of the DSRIF for a Simulated Ballistic

Trajectory Over the White Sands Missile Range

In order to validate our decentralized approach to solving the linear

least squares estimation problem, a high fidelity simulation of a multisensor

network, tracking a ballistic trajectory over the WSMR, was encoded in Fortran

'77 and executed on an IBM (clone) Model AT desktop computer (640K ram, 20
Mbyte hard disk, Intel 80287 math coprocessor). Initial conditions for the
nominal trajectory were calculated using a "flat earth" or constant

gravitational acceleration model which neglects the earth's rotation and

assumes that the target vehicle is a point mass.

The initial position is launch complex #32 (E4,N2) and the desired

terminal position is the GAM 83 target (E13,N85). This corresponds to a
*flight path of

((13-4)2 + (85-2)2)4 = 83.49 miles (29)

when projected onto the "Range Area - General Road Map (RAGRM)" which we use

to define the GCS. That is xl,x2,x3 is a right handed coordinate system where
the vector cross product of x

I with x2 = x3 and the vectors [x 1 0 03 and [0 x2

0] point east along latitude 32.380 degrees and north along longitude 106.481

degrees respectively. Then [0 0 x3 ] is collinear with the radial vector which
points outward from the earth's center and passes through the origin of the

GCS. A launch elevation angle, w.r.t. the xl,x 2 tangent plane, of 45 degrees
was chosen in order to maximize the projected flight path for a given amount
of energy. The corresponding initial positions and velocities are then

X1 = 21,120. feet

8 = 10,560. feet

3 = 0. feet

x= ((32. feet/sec2 )(83.49 miles/2.)(5280 feet/mile))4  (30)

- 2655.8 feet/sec

x4 (xJ)(9./83.49) - 286.29 feet/sec

* x = (x6)(83./83.49) = 2640.21 feet/sec

with a maximum ensuing altitude of

x3 (tf/2.) = (x6)2/(2.(32. feet/sec
2 )) 110,207. feet (20.9 miles)

(31)

where
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tf = (83.49 miles)(5280 feet/mile)/x 6 (O) = 165.99 seconds, (32)

the flight impact time.

Five sensor locations which cover both sides of the projected flight path
were selected. They are Zebra (E3,N14), Rhodes Canyon Range Center (EO,N53),
ABRES Radar (W1O,N99), Oscuro Range Center (E18,N77) and King I (E21,N34).

Each sensor records measurements with respect to its own LCS so that
coordinate transformations to the GCS were derived and included in the
observational equations. The transformation is

x xi,1

X2 = (Ti) Ixi,2 + i(33)

where

Ti
= ( 8 Ti ) 7 Ti ) ( 6 Ti ) ( 5 Ti ) (34)

and2'

STi = 0 cos(L+a i ) sin(L+ai) (35)•0 -sin(L+a i) cos(L+l)!

FCos 19 0 -sin p 7
6Ti= 0 1 0 (36)

sin Pi  0 cos Pi

1 0 0]
7 Ti - cos L -sin L (37)

0  sin L cosL

CO coTi sin Ti 078 Ti - -sin Ti  cos Ti 0 (38)
0 0 1

noting that (Ti)tr = (Ti) -1 since Ti is an orthogonal transformation. A
computational savings results when (5Ti)(6Ti)(7T1) are combined using
trigonometric identities for the cosine and sine of the sum of two angles
along with the small angle approximation since ai is bounded by ± 1 degrees

over the length of the WSMR.

di Is the vector from the GCS to the ith LCS and ai, T are the three

Euler angles describing the orientation of the ith LCS w.r.t. the GCS.

* _Specifically, if we first rotate about xI counterclockwise by an (L+a i ) degree

, change in latitude (aligning y2 with the polar axis), and then rotate
counterclockwise about y2 by a 01 degree change in longitude, (0 i is bounded
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by ± 1/2 degree over the width of the WSMR) then rotate clockwise about x3 by
an L degree change in latitude, and finally rotate about z4 by Ti degrees to
account for "tangent plane misalignment", the LCS will coincide with the GCS
when di = 0. ai Is equal to the LCS latitude - GCS latitude. pi Is equal to
the LCS longitude - GCS longitude.

To determine ai , 3i given L, S and di (in global coordinates), solve the
following two equations:

* Fxi7 F i Fdi,17I ox ,2  . o~ 2 i,
i x  + Tg di,2  (39)Loxi1 ox3 Loi,o

L i, ECEF ECEF GCS

where F iF re cosL Cos 9
x = -re cos L sin 9 (40)

nd -x3E re sin L
L ECEF

and

Fsin S-cos 9 0 1 0 0
Tg asC o sinS 0 0 sin L -cos L (41)

S 0 Cos L sin L

oxii 0r
1 Cos (L+al) cos (S+p&)

°i,21 . i cos

x or " cos (L+ai) sin (S+p2
) (42)

xi CEF or  sin (L+ui)

The solution is

1°1(xi'3)2
L+ai - tan-1  (L+ai) % 32 degrees (43)

(o~i1) 2 + (oXi,2)2

+ i 
=cos

- 1  o i) (+P i ) t 106 degrees (44)
0r  Cos (L+a

i

where

o
r
i l x1 (45)

sin (L+al)
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The results are given in Table 1 below.

I Sensor .
i Type di ' I  di, 2  di, 3  L+ai 9+3 i  T'

1 at 3. 14. 0. 32.5824 106.4295 0.

2 at 0. 53. 0. 33.1462 106.4810 0.

3 rr -10. 99. 0. 33.8109 106.6550 0.

4 at 18. 77. 0. 33.4927 106.1690 0.

5 rr 21. 34. 0. 32.8710 106.1195 0.

Table 1: Optical Tracker (at) and Range Radar (rr) Locations a-1

Orientations in GCS for the Ballistic Target

Detailed equations that describe the translational motion of the target

were developed. The equations include a radial gravitational force as well as

centrifugal and Coriolis forces which come about by rotation of the GCS about

* the polar axis. The equations are

4 -Pxl
- + 2Q(x 5sin L - x6 cos L) + Q2 x1  (46)

S((xl)2 + (x2 )2 + (x3+re)
2 )3 /

2

= - 2Qx4sin L
((xl1) 2  + (x2)

2  + .(x3+re )2)3/2

,+ Q2 (x2 sin 2 L - (x 3+re)cos L sin L) (47)

6 ((xl) 2  -u(x3+re.)

- + 2Qx4cos L

((x1 )2 + (x2 )2 + (x3+re)2)3/2

+ Q2 ((x3 +re)cOs2 L - x2 cos L sin L) (48)

where

*G me (49)

and all other variables are defined in the List of Symbols. A spherical
* harmonic expansion of the earth's gravitational field is probably not

necessary since most shots over the range are low altitude however, a major

effect will be atmospheric drag and more precise modeling may be necessary.

Any one of three sensor types may reside at each sensor location. The

three types ore

range radar wherein range (ri), azimuth (f i ) and elevation (9 i) data

are available,

S -21-

0!



I

optical tracker wherein azimuth and elevation data are available, and

doppler radar wherein range, range rate (ri), azimuth and elevation

data are available.

The observational equations in terms of the global state are

ri 
- ((xl-di'l) 2 + (x2 -di' 2 )2 + (x3 -di, 3 )2 )1 /2  (50)

Fx 1di i7
[0 0 1] (Ti)tr x2-d

i ,2

x3-d
i , 3

ei = sin-1 (1
((xl-di,1) 2 + (x2 -di, 2 )2 + (x3 -di,3 )2 )1/2  (51)

Fx-d,,11

[0 1 0] (Ti)tr 2-di, 2
xx 3x_d

i , 5_

ri tan- 1  
(52)

x i~i
[1 0 0] (Ti)tr x2d

i , 2

FX3di, -

4 X 5  X6 1x 2-di, 2

= ((xl~dl)3_+ L

N ((-di,1)2 +(x
2 _di,

2 )2 + (x 3.di,
3 )2 )1/2

The various measurement variables are defined by Figure 1 that follows.

or0 xi ,3

ri

xi,2

xi,1 ri

Figure 1: The Local Coordinate System and Measurement Variables

-22-
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The nonlinear equations of motion (46)-(48) were integrated forwards in

time starting from (30) and using the Fourth Order Runge Kutta method with a
1 second interval. Figures 2 and 3 show the resultant trajectory of the

target vehicle. Comparison with the flat earth model predictions show close
agreement in peak altitude (110,305. feet), terminal time (166+ seconds), and

the projected path length (82.7 miles).

1 x 2 X3 4 X5 6
k k k Xk Xk k Xk

82 44,403. 226,391. 110,283. 285.5 2619.5 38.7

83 44,688. 229,010. 110,305. 285.6 2619.1 6.9

84 44,975. 231,629. 110,296. 285.8 2618.7 -24.9

166 69,187. 444,565. 1176. 308.6 2570.3 -2640.9

167 69,496. 447,135. -1481. 309.0 2569.6 -2673.0

Table 2: Nominal Positions and Velocities for Key Time Points of the

Ballistic Trajectory

As a further check on the Fortran code for this part of the simulation, the

total translational energy (kinetic plus potential) of the target vehicle was

computed for each point along the computed trajectory. The total energy
remained constant to within 1% as it should since there are no external forces
(u(t) - 0) and the system is conservative. Figures 4 through 8 show some of

the corresponding measurements for the various data-types with vi 
= 0 for

* {1 i!M}.

Each row of A(t) is computed by partial differentiating the scme row of
f(x(t)) w.r.t. the nominal state. Thus, A(t) has the following structure

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Zx4  x4

, x1  x 6

A(t) - (54)

x6  Jx 6

where

-23-
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Figure 2: Nominal Position Versus Time for the Ballistic Target.
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Figure 5: Sensor #1 Azimuth and Elevation Measurements Corresponding to the
Nominal Ballistic Trajectory.
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Figure 8: Sensor #5 Range, Azimuth and Elevation Measurements Corresponding
to the Nominal Ballistic Trajectory.
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X4 3p~xl )2
+ + 92

x1  ((x 1)2 + (x2 )2 + (x3+r,)2)3/2  ((x 1)2 + (x2 )2 + (x3+re )2 )5 /2  (55)

3x2  ((xl) 2 + (x2 )2 + (3r

.)x4  3pxl(x 3+re)
- = (57)

Ax 3  ((xl) 2 + (x2 )2 + (x3+re )2 )5/2

-x4 
(58)

Ax
4

-5=2sin L 
(59)

AX4

-=6 -29cos L (60)

Ax1  ((Xl) 2 + (x2)2 + (3r))/

- = +

6Ax 2  ((xl) 2 + (x2)2 + (x3+re )2)3 /2  ((x 1)2 + (x2)2 + xre25/

+ g2sin 2 L (62)

> X5  
.3jjx 2(x3+r e) 9 c s L s n L( 3

* x3  ((x 1 )2 + (x2)2 + 3re25/

AX5

x4 -29sin L 
(64)
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iO5

-=0 (65)

*x
5

-=0 (66)

x6  3pxl(x 3+re )
e- = (67)

x1  ((xl) 2 + (x2 )2 + (x3+re)2)5 /2

, x6  px2(x3+re)

= x2 x +r )- 
2cos L sin L (68)

'-X2  ((xt)
2 + (x

2 )2 + (x3+re)2)
5 /2

, x6  -3p(x
3 +re )2

Sx3  ((x1 )2 + (x2 )2 + (x3 +re)2 )3 /2  ((x1 )2 + (x2 )2 + (x3 +re) 2 )5 /2

+ Q2cos 2 L (69)

x6

- = 29cos L (70)

x6

-=o (71)

x
6

x6  
(72)

Each row of Ci(t) is computed by partial differentiating the some row of
hi(x(t) w.r.t. the nominal state. Thus, when the ith sensor is a doppler
radar, Ci(t) has the following structure

-

" 
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I-- 0 0 0

c im (73)

I-- 0 0 0
l x3

where

r* x1-d'' 1

- = (74)
N .xl ((xl-d''1 )2 + (x2-d",2 )2 + (x3-d'i' 3 )2 )1/2

riNd,

- = (75)
~x2  ((xl-di1) 2 + (x2 -d1.2 )2 + (x 3 -di, 3 ) 2 )1f 2

Sri x3-dri

(76)
xi ((xldi)2 + (x 2 d, 2 ) 2 + (x3-d' 3)2) 2

+4 X4 s (77)

~ x1  ((x-d 1 )2 + (x2-d 2 )2 + (x3-d 3 )2 )/ 2

ri (x4 (xl-di'1 ) + x5(x2 -di,2 ) + x6(x 3 -di,5))(x 2 -di, 2 )

- X2  ((x 1-di, 1 )2 + (x 2 -di, 2 ) 2 + .4 d,32)/
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X5

+ (80)
((x -di1)2+ (x2 -di,

2 )2 + xd321/

ri (x4(xl-d''1 ) + x5(x2 -rji.2 ) + x6 (x3 -d1 3 ))(x3 -d1,3 )

X3 ((x 1-di1)2 + (x2 -~di.2 )2 + (x3 -di 3 )2 )3 /2

((x1-i,)2+ (x2 -d1,
2 )2 + (x3 -d'

3 )2 )1/2  (1

SX4 =((xl-d''
1 )2 + (x2 -d''

2 )2 + (x3 -d''3 )2 )
1 /2  (2

i x2-di,2

~X5 =((Xl-d1) 2 + (x2 -di.2 )2 + (x3 -d''3 )
2 )1/2  (3

X3 -di,3
. (84)

~X6  ((xl-d'1) 2 + (x2-d',2 )2 + (x3-d''3)2)11 2

[0 0 1] (Ti)tr x2-di,2j (xl-dl)

Ge1 1 Cxd1) 2 Lxd ]

~xi (1-u2 )1/2  (( -i12+ (x2-di'2 )2 + (3d,))/

+ [0 0 1] (Ti)tr (85

00

where u is the argument of sin-1 in equation (51).



xl-d

[0 0 1] (Ti)tr Ix2 -d1:2 I x-d''2

~X2  (1-u2 )1/2 ((x 1 -di,) 2 + (x2 -d',2 )2 + 3d32)/

7o7
[0 0 1] (Ti)tr LI

+ (86)

((x -di1)2+ (x2 -~di,2)2 + (x3-di, 3 )2 )1I 2

[0 0 1] (Til)tr 7z i:2 (x3-di, 3)

0e 1 x-d'

~X3  (l-u2 )1/2  ((x 1 -di, 1 )2 + (x2 -d",2 )2 + (x3-d",3 )2 )3/2

[0 0 1] (Ti)trF]

L11
+ (xldi,)2+ (x2 -di, 2 )2 + x-'321 (7

~e' ~Ei
- = - =0 (88)

_(di' [1 0 0] (Ti)tr 0

1i 1 3-di,3 I

~xl (14-u2) rxl-di 1 -
[1L 0 0] (Ti)tr IX2._i 2  )2

x3 -di'
3
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[0 1 0] (Ti)tr 1 a

+ L1(89)
IXl-dl 1

[1 0 0] (Ti)tr 2dI 2
IX3-di' 3

where u is now the argument of ton-' in equation (52).

Ix'-d''I I0
[0 1 0] (Ti)tr 2_i :2 [1 0 0] (Ti)tr

* ~ 1 X3 di 31 0

([1 0 0] (Ti)tr 2dL 2

-_ j

+ [0 1 0] (Ti)tr -01( )

+ (90)~

[1 0 0] (Ti)tr 2d2

0 = (+u2)[a 1 0] (T4-)tr [ 1 0] (i)trLJ

ridi 11

( 1 0 0] (Ti)tr x-'2 )

-33-
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0

[0 1 o] (Ti)tr I0

L-

+ (91)

I xldi , -1

[1 0 0] (Ti)tr x2 -di '
2

Ix3-di,3I

r i  ri ri
... .-- 0 (92)x4 x5  x6

The 6 biases ai,i,Ti',dil,di, 2 ,di ,3 per local system could be included
as states in the filter and estimated in order to correct for any preflight
miscalibration. Then, ai = 0, pi = 0 ... would be added to the equations of

motion and additional partial derivative expressions would be needed.
However, only the 6 positions and velocities of the target vehicle were

included.

In order to create simulated data and test the state estimation part of
the code, a subroutine RANDOM for generating sequences of Gaussian random
vectors with prescribed covariance was written. Two algorithms were
considered. The first proceeds by rotating coordinates to a system in which

the covariance matrix is diagonal. In this system the multivariate normal
density becomes equal to the product of its marginal densities, and each

marginal density can be sampled independently of the other components. After
obtaining a sample vector in this rotated system, the coordinates are rotated
back to the original system.

The second algorithm proceeds by decomposing the multivariate normal
density into the product of the marginal density of the first variate times
the joint density of the remaining voriates, conditional upon the value
sampled for the first. This joint density is determined once the first

variate has been sampled from its marginal density. The procedure is then
applied to the second variate and iterated until values have been assigned to
all components of the sample vector. This "Conditional Decomposition
Algorithm" will execute more rapidly than the latter "Matrix Diagonalization

Algorithm" especially for time varying covarionce matrices. Thus it was

chosen as the basis for subroutine RANDOM.

Assuming a constant covariance matrix, RANDOM was tested by counting the
number of random values within several bands for each component. Comparison

with theory has shown agreement to within a few percent. Much time was spent
in validating RANDOM since its accuracy is a prerequisite for meaningful
future comparisons of DSRIF estimates with decoupled Kalman filter estimates

in Phase II research.

Figures 9 and 10 show the evolution of the perturbed state as governed by

equation (3). The initial condition is
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Figure 10: Perturbed State Velocities Versus Time for the Ballistic Target.
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Sx0 = [ O.ft O.ft O.ft 2.8629 ft/s 26.4021 ft/s 26.558 ft/s ] tr

which represents a scaling of the initial velocity vector for the nominal
trajectory. Thus, the combined nominal plus perturbed solution should reach
impact along the nominal line of sight (which is the vector difference between
the nominal impact point and the nominal initial condition) but further from
x0 since a positive scaling factor was used. A diagonal Qk with small
variances was used to generate the process noise sequence. The position
variances were .1 ft2 and the velocity variances were .1 (ft/s)2 .

Figures 11, 12 and 13 are the corresponding DSRIF results with all of the
prior and process noise information embedded in the merge processor. Each of
the 12 local filters 2rocessed 1 measurement variable. A diagonal Rk, with

variances of 10- 5 deg3 and 102 ft2 for angular variables and range variables
respectively, was used to generate the measurement noise sequence. The
initial state estimate for all of the local filters was

&x = [20.ft 20.ft 20.ft 23.8629 ft/s 47.4021 ft/s 47.558 ft/s ] tr

and a diagonal PO(+), with variances of 100 ft2 and 100 (ft/s)2 for position
variables and velocity variables respectively, was used to initialize the
merge processor. Figures 11 and 12 show that the rms position and velocity
estimate errors quickly decay to steady state mean values after less than 10
time samples. The corresponding estimate error covariances follow the same
course as expected.

In Figure 14 the process noise levels were multiplied by 10 and
comparison with Figure 13 shows that the corresponding estimate error
covariances increase as well. This is as expected since Qk is linearly
related to the time updated estimate error covariance i.e., the conventional

covariance time update equation is given by

Pk+l(-) = IkPk(+)Ikt r + Qk (93)

Furthermore, the same phenomenon results when Rk is multiplied by a factor of
5 in Figure 15. The conventional covariance measurement update equation in
Josephson Stabilized form

Pk(+) - [I - KkHk] Pk(-) [I - KkHk]tr + KkRkKktr (94)

may be combined with the Kalman gain equation

Kk = Pk(-)Hkt r [HkPk(-)Hktr + Rk]1- (95)

to show that the time updated estimate error covariance is linearly related to
Rk as well. The result is that

Pk-l(+) = Pk-l(-) + Hktr Rk- 1Hk (96)

2.3 Extended-Decentralized Square Root Information Filtering of MLRS Data

On November 11, 1987 six rockets were launched sequentially in time over
a period of 2 hours and 30 minutes at WSMR. Only 1 rocket was airborne at any

-36-



t

i i

I

Figure 12: RMS Global Velocity Estimate Error Versus Time.

2 ft squaried / --')

iiN

Figure 13: Global Position and Velocity Estimate Error Covoriances Versus
Time. RkOj'j)_10-5 for angle variables and 102 for range
variables. Qk(J'i) - .1 for all J-1,...,6.
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one time and thus data association for multitarget tracking would not be
needed. MTI obtained a copy of the Multiple Launch Rocket System (ML.RS) data
in order to gain experience at processing real test range single target data
with the algorithm. The digitized measurements for all six shots were plotted
in order to select the best set as characterized by the least amount of data
drop outs and outlyers. Figures 16 through 26 comprise the data set chosen

and this was the second shot.

The MLRS data set contained azimuth and elevation angle measurements
(with respect to each local sensor) from 11 optical trackers located at the
range coordinates listed in Table 3 below. The origin of the WSCS is
[500,000. 500,000. 0.] in units of feet with its latitude and longitude
equal to 32.38 and 106.481 degrees respectively. Each optical tracker is also
characterized by a set of 3 Euler angles a, &1 and T

i which define its
orientation relative to the Global Coordinate System (GCS) as in section 2.2.
The first two angles are calculated using equations (39) through (45) and the
angular misalignment is assumed equal to 0.

* I Optical
i Tracker di 'l di,2 di,3  ai  pi Ti

1 Gl10 7,308.2856 -237,899.4738 2,686.4839 32.4320 106.3096 0.1
1 2 G152 3,440.0051 -225,071.0857 2.810.1186 32.4671 106.3221 0.1

3 G 30 -32,914.1744 -203,310.5045 3,352.4878 32.5267 106.4402 0.1
4 G 80 -25,713.6722 -221,819.8655 2,778.9435 32.4760 106.4167 0.1

1 5 G102 -26,675.1965 -244.187.0879 2,523.8507 32.4148 106.4198 0.
6 G106 -19,918.2179 -252,889.6291 2,452.5578 32.3910 106.3979 0.1
7 G150 - 6,758.5768 -201,753.4857 2,992.5174 32.5310 106.3552 0.1
8 G220 -32,505.5910 -181,663.7427 3,539.5030 32.5859 106.4389 0.1
9 G252 3,844.5713 -168,382.0272 3,299.8877 32.6223 106.3208 O.1

10 G254 2,449.5559 -152,952.6079 3,436.9316 32.6646 106.3253 0.1
11 G256 -38,799.7405 -157,557.3009 3,506.5874 32.6519 106.4595 0.1

Table 3: Optical Tracker Locations and Orientations in GCS for the MLRS Test

The data set also contained range, azimuth and elevation angle

measurements from 3 radars but with respect to the local coordinate system
-Q originating at the launcher. Their locations and orientations are given in

Table 4 below however, the launcher location di, 1 = -14,074.34,

% di, 2 
= -247,569.51, di, 3 

= 2,505.08 was used instead.

i Radar di ,  di ,2 di,3  ai 0i Ti

12 350 -13,971.87 -264,43U.55 2,334.06 32.3594 106.3786 0.
I 13 393 -27,098.86 -222,179.08 2,787.84 32.4750 106.4212 0.

14 394 - 2,382.95 -260,481.11 2,403.07 32.3702 106.3410 0.

Table 4: Radar Locations and Orientations in GCS for the MLRS Test
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Figure 16: Radar #350 Range, Azimuth and Elevation Measurements for MRLS.
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Figure 17: Radar 1393 Range, Azimuth and Elevation Measurements for MRLS.
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Figure 20: G80 Azimuth and Elevation Measurements for MRLS.
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Figure 21: G106 Azimuth and Elevation Measurements for" MRLS.
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Figure 22: GilO Azimuth and Elevation Measurements for MRLS.
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Figure 23: G152 Azimuth and Elevation Measurements for MRLS.
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Figure 24: G220 Azimuth and Elevation Measurements for MRLS.
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Figure 26: G256 Azimuth and Elevation Measurements for MIRS.
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An extended version of the DSRIF is needed since the nominal rocket
trajectories were unavailable. The Extended DSRIF (E-DSRIF) may be derived by

extending the observations equation, linearized about the current estimate, to

Y= - H1 xk + v1 + ZI (97)

where

z4 = hl(x)l - Hi xk(-) (98)

Ix=xk(-)

and

. hi(x)
H1 =(99)

JX

Ix-xk(-)

and the dynamics equation, linearized about the current estimate, to

* xk+1 = Fk xk + Bk Wk + gk (100)

where

gk = f ~x)I Fk xk(+) (101)

I x=xk(+)

andand f(x) I

Fk = I (102)

3x I
Ix=xk(+)

Substituting equations (97) and (100) into the least squares performance

the local filters in extended form:

Measurement Update

I Ri(-) zi(-) Ri(+)5T i I (103)
k (RiY~ Hi (Ri)-% (yi-z') 0 ei]IJ Lo

4' Time Update

-T I Rw(k) 0 zw(k)* 
6Ti I I"k

_ L-R(+) Fk-Bk Ri(+) Fk -
1  (zi(+) + Ri(+) Fk 1 gk)I
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F-

( (i) (i) (i) I
R*(k) Rx(k) z:(k) I

= I(104)
C i) (i) I

0 o Rk+l(-) Zk+l(-)

Herein, 5Tk and 6Tk are orthogonal transformations which put the matrices
on the left hand sides of (103) and (104) into upper triangular form (they may
be implicitly computed using Householder transformations). All other
variables are defined in the List of Symbols.

Processing on the global scale is the same as for the DSRIF i.e., the
merge steps are exactly as defined in section 2.1. Only processing on the
local scale is modified as such. A major difference between the E-DSRIF and
DSRIF is that the local E-DSRIFilters require knowledge of the globally
optimal estimate xk(±) in.order to compute their first order Taylor series
expansion terms Fk, gk' HI and zi whereas the DSRIF may compute xk(±) at any

d rate less than the highest data rate. Future research should examine whether
* an E-DSRIF algorithm, in which the Taylor series expansions are about the

locally optimal estimates, may be derived.

In order to derive a suitable dynamical model as well as initialize the
filter, the position, velocity, acceleration and jerk of the rocket were
precomputed using finite differencing with at = .1 seconds. Results are
plotted in Figures 27 through 30 using all of the data provided for radar #350
except for the first 21 samples (we estimated that all rt's had locked onto
the target by the 22nd sample). Figure 30 indicates that jerk is suitably

modeled as a white Gaussia noise process with constant mean. Thus, the E-
%, DSRIF was encoded in Fortran '77 using a second order polynomial dynamical

* . model wherein

- A1

1 0 0 At 0 0 0 0 0

0 1 0 0 at 0 0 0 0
0 0 0 1 0 0 At 0 0

Fk 0 0 0 0 1 0 0 at 0

0 0 0 0 0 1 0 0 at

00000010 0
I 0 0 0 0 0 0 1 0

* and
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Figure 28: Derived Acelerit Measurements from Radar #350.
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Figure 30: Derived Jerk Measurementts from Radar 1350.
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"--
0 0 0
0 0 0
0 0 0

0 0 0

Bk  0 0 0

0 0 0

6t 0 0

0 6t 0

0 0 6t

-J

The sample mean and covariace of wk was computed to be

[ -10. ft/sec
3  -.055 ft/sec

3  -.48 ft/sec
3 ]

and

diag [ 23,851. ft 2 /sec
6  1,458. ft

2 /sec 6  23,199. ft
2 /sec

6  ]

respectively however, a much larger covariance was used in order to compensate

for any errors in the model. Detailed testing of the algorithm is deferred to

Phase II work wherein an adaptive method for adjusting Ok in real time will be

investigated.

Figures 31 through 35 show the rt and at measurements as predicted by the

E-DSRIF. Comparison with the actual measurements in Figures 16, 18, 19, 20

and 22 shows an exact match to within a plotting line width. A better means

of comparison is thus provided below in Tables 5 and 6.

0
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Fgure : Range, Azimuth and Elevation Estimates for MLRS.

Figure32: Rk(J )- 0  for at variables and 10.,1.,1. for rt range, azimuth

and elevation variables r ;a ectvely.

Qk(JJ) = diag [ 1.7 x 101" 7.e4 x 101
7  9.3 x 1017 ]
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~~Figure 3: G3O Azimuth and Elevti on Estimtes 
for MLRS.

Rk(j,j)10
10 for t vribles and 10.,1.,. for rt range, azimuth

and elevation vribles res~ectitvely.

0k j - diag [ 1.7 x 10117.4 x 1017 9.3 x i0
17 ]
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Figure 34: G110 Azimuth and Elevation Estimates for MRS.
RkOj,j)-1010 for at variables and 10.,1.,l. for rt range, azimuth
and elevation variables rsetvely.
Q(JJ) -diag [1.7 x 1019 7.e x 1017 9.3 x io07 ]
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-52--Figure 35: 0110 Azimuth and Elevation Estimates for MLRS.

, , ,: R k j ,j ) 1 0 1 0 1fo r t v a r i a b l e s a n d 1 0 ., 1 ., 1 . f o r r t r a n g e , a z i m u t hand elevation variables r s e vely.', ' Q (J J) - di g 1 1.7 x 101" e 7.i x 107  g.5 x 1 017 ]0
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k type r1 2  r 1 2  E1 2  r1 4  F1 4  014

k k k k k k

23 m 4,355.61 359.18 18.07 4,305.91 357.65 18.04

e 4,355.61 359.19 18.74 4,355.61 359.19 18.74

24 m 4,683.17 358.91 18.07 4,665.94 358.30 18.09
e 4,658.07 358.16 18.07 4,658.07 358.16 18.07

229 m 52,171.33 358.96 11.88 52,163.32 358.95 11.89
e 52,167.32 358.96 11.89 52,167.32 358.96 11.89

230 m 52,332.09 358.96 11.84 52,324.25 358.95 11.86

e 52,328.15 358.96 11.85 52,328.15 358.96 11.85

459 m 80,328.90 359.22 2.96 80,178.71 359.22 3.00

e 80,254.10 359.22 2.98 80,254.10 359.22 2.98

Table 5: Radar #350 and #394 Measurements and Estimated Measurements for

MLRS. Rk(j,j)=10 10 for at variables and 10.,1.,1. for rt range,
azimuth and elevation variables respectively.

Qk =j diag [1.7 x 1017  7.4 x 1017  9.3 x 1017 j

p I

£..

-53-

S=ZltI



k type F3 0er 4 i 8

23 m 154.96 1.05 151.09 3.29 257.38 3.80

e 154.97 .18 151.87 2.01 255.49 2.88

24 m 154.39 1.19 150.73 3.58 258.16 4.07

e 154.90 .25 151.71 2.14 256.30 3.00

I 229 m 68.57 28.54 22.78 21.75 ..

e 69.20 26.13 22.93 20.28 331.64 12.52

230 m 22.64 21.65 * I
e 68.74 26.07 22.80 20.18 331.73 12.48

459 m 26.07 5.58 * I
. e 26.32 3.94 10.98 3.66 342.28 2.98

Table 6: G30, G80, G110 Measurements and Estimated Measurements for MLRS.

Rk(j,j)=1010 for ot variables and 10.1.1. for rt range, azimuth
and elevation variables res ectively.

Qk(j,j) = diag [ 1.7 x 101 7.4 x 1017 9.3 x 1 7 ]

* denotes data drop-out

The large values of Rk(j,j) for ot variables serves to weight the rt data much
more heavily in computing estimates. Decreasing the ot measurement errors to

more realistic values should give similar results since the predicted ot
measurements matches their actual values very closely.

Figures 36 and 37 show the global position estimates and corresponding

estimate error covariances respectively. Again, the rocket positions derived
*_ from radar #350 as compared with the E-DSRIF estimates based upon all of the 5

selected sensors, show extremely close agreement. The slight difference in
the estimate of height is due to using Tlauch = I instead of its correct

value as defined by equation (34). In Table 7 below, the estimates are

compared using the correct cooordinate transformation.
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,.,Figure 36: Global Position Estimates (w.r.t. launch) Versus Time for MLRS.
',""Rk~ -10l1 0 for at variables and 10.,l1 1 for rt range, azimuth
' ' and elevation variable: respctively.

Gk(j, j ) = diag [1.7 x101 7.4 x 1017 9.3 x 1017

-I....-

e%,

~~- * I i5 sec

ofor

Figure 36: Global Position Estimates (wror~t loaunc) Versus Time for MLRS.
Glob)=0 1  for at variables and 10-1-.1. for rt range, azimuth

and elevati on variab

.'- t *oec

€,~~ R ( j ,j) =1 1 f a t a i b e an 10 1.,1 1o0r 1an e, a im tand elevation variables respectively.Qk(jj) = diag [ 1.7 x 101/ 7.4 x 1017  9.3 x 1017 ]

0
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ktp 1i 2 X3 4 X5 6 7 X8 X9

Xk kk Xk Xk k Xk k Xk

22 e -14,104. -243,740. 3,754. -296. 3,110. 1,015. 430. -23. 73.

m ....................... s a m e ................................

25 e -14,189. -243,437. 3,798. -280. 3,104. 995. 429. -23. 73.

m -14,076. -243,413. 3,806. -254. 3,120. 986. 436. -23. 80.

24 e -14,184. -243,110. 3,903. 106. 3,271. 1,062. 497. 11. 85.
m -14,160. -.243,101. 3,905. -211. 3,118. 994. 421. -35. 49.

" -"229 e -15,018. -196,406. 12,646. -19. 1,639. 1. -.4 -45. -15.

m -15,012. -196,397. 12,641. -17. 1,639. -3. 1.6 -46. -10.

230 e -15,020. -196,242. 12,646. -20. 1,635. -3. -5. -41. -28.

m -15,014. -196,233. 12,641. -18. 1,635. -4. 1.7 -49. 8.

459 e -15,197. -167,388. 5,729. 22. 758. -431. 21. -221. 184.

m -15,202. -167,307. 5,704. 8. 866. -439. .9 -25. 59.

Table 7: Global Position Estimates and Derived Measurements for MLRS.

Rk(j,j)=10 1 0 for at variables and 10.,1.,1. for rt range, azimuth

and elevation variables respectively.

Ok(j,j) = diag [ 1.7 x 101 7.4 x 9.3 x 1017

Finally, the monotonically increasing estimate error covariance ( actually,

PO = diag [ 10 1 2 ft 2 ... 1012 ft 2 /sec 2 ... 101 3 ft 2 /sec 4 ... ] was used to

initialize the covariance propagation so that the first step is a large, off

scale decrease to approximately 100 ft2 ) is due to our using values of Ok

approximately 12 orders of magnitude higher than its precomputed sample value

* A more realistic value should result in a Pk with quite the opposite behavior.

3.0 Estimates of Technical Feasibility

* The objective of Phase I research was to determine the feasibility of

constructing an integrated test range tracking network based upon the DSRIF.

A multitude of test range scenarios is envisioned so that a robust system is

needed. At one extreme, test vehicles may include ballistic projectiles with

well defined nominal trajectories a priori while at the other, multiple smart

munitions with maneuvering capability is possible. The key to a successful
* network design is to employ a more or less sophisticated version of the

algorithm depending upon the particular scenario. Thus the network must be

adaptable. For example, preflight simulations of the proposed shot using high

-56-



fidelity aerodynamic models can yield good values for the process noise levels
and a basic DSRIF should result in good tracking performance. However, a
sudden departure from the nominal trajectory would require a detection
mechanism as part of the algorithm and adjustment of Qk in real time.

In order to determine the feasibility of our distributed approach to
multisensor tracking, several specific technical objectives must be met.
First and foremost, the basic DSRIF theory needs to be extended to enable the

tracking of maneuvering vehicles, high dynamic trajectories, and multiple
targets. The latter requires that a theory for associating data with targets,
based upon the DSRIF, be developed. Other theoretical questions such as the
development of a delayed-state DSRIF for processing range-rate measurements, a
method for isolating faulty sensors, and efficient implementations of the
DSRIF that facilitate high data rates need to be addressed.

Secondly, the DSRIF is a new algorithm which has undergone only limited
testing in Phase I research. Extensive testing within a multisensor
multitarget tracking scenario is needed. Finally, consideration needs to be
given to the design of the tracking network both at the global and local
levels. The major question here is whether a sufficient data rate can be
achieved using current chip technology. Another question is whether the
architecture can be reconfigured (in software) to implement other members of
the family of DSRIFs. A OSRIF based multisensor laboratory tracking

experiment should be performed.

For multitarget tracking, correlation of measurements with targets can
best be done using a hypothesis testing approach. The idea is to select the
correlation of measurements with targets that has maximum probability given
the data. Calculation of all combinations to form the entire set of these
conditional probabilities can be prohibiting, especially in a dense target
environment. A major advantage in using the DSRIF is the tremendous reduction

in computational cost associated with this calculation.
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